由于独特的驾驶特征,人类驾驶员具有独特的驾驶技术,知识和情感。驾驶员嗜睡一直是一个严重的问题,危害道路安全。因此,必须设计有效的嗜睡检测算法以绕过道路事故。杂项研究工作已经解决了检测异常的人类驾驶员行为的问题,以通过计算机视觉技术检查驾驶员和汽车动力学的正面面孔。尽管如此,常规方法仍无法捕获复杂的驾驶员行为特征。但是,以深度学习体系结构的起源,还进行了大量研究,以分析和识别使用神经网络算法的驾驶员的嗜睡。本文介绍了一个基于视觉变形金刚和Yolov5架构的新颖框架,以实现驾驶员嗜睡的识别。提出了定制的Yolov5预训练的结构,以提取面部提取,目的是提取感兴趣的区域(ROI)。由于以前的体系结构的局限性,本文引入了视觉变压器进行二进制图像分类,该二进制图像分类在公共数据集UTA-RLDD上经过训练和验证。该模型分别达到了96.2 \%和97.4 \%的培训和验证精度。为了进行进一步的评估,在各种光明情况下的39名参与者的自定义数据集上测试了拟议的框架,并获得了95.5 \%的准确性。进行的实验揭示了我们在智能运输系统中实用应用框架的重要潜力。
translated by 谷歌翻译
呼吸障碍(例如睡眠呼吸暂停)是一种严重的疾病,由于肺部含有/交换氧气和二氧化碳的能力不足,以确保身体处于稳定的稳态状态,因此会影响大量个体。呼吸测量(例如微小通风)可以与其他生理测量相关,例如远程监测健康和检测此类呼吸相关疾病的症状,例如心率和心率变异性。在这项工作中,我们制定了一种基于深度学习的方法来衡量私人数据集上的远程通风。接受这项工作后,数据集将公开。我们使用两个深度神经网络的两个版本来估计通过可穿戴心率和呼吸设备获得的数据流的微小通风。我们证明,我们的管道的简单设计(包括轻型深神经网络)可以轻松地纳入实时健康监测系统中。
translated by 谷歌翻译
Deep learning techniques with neural networks have been used effectively in computational fluid dynamics (CFD) to obtain solutions to nonlinear differential equations. This paper presents a physics-informed neural network (PINN) approach to solve the Blasius function. This method eliminates the process of changing the non-linear differential equation to an initial value problem. Also, it tackles the convergence issue arising in the conventional series solution. It is seen that this method produces results that are at par with the numerical and conventional methods. The solution is extended to the negative axis to show that PINNs capture the singularity of the function at $\eta=-5.69$
translated by 谷歌翻译
The generalisation performance of a convolutional neural networks (CNN) is majorly predisposed by the quantity, quality, and diversity of the training images. All the training data needs to be annotated in-hand before, in many real-world applications data is easy to acquire but expensive and time-consuming to label. The goal of the Active learning for the task is to draw most informative samples from the unlabeled pool which can used for training after annotation. With total different objective, self-supervised learning which have been gaining meteoric popularity by closing the gap in performance with supervised methods on large computer vision benchmarks. self-supervised learning (SSL) these days have shown to produce low-level representations that are invariant to distortions of the input sample and can encode invariance to artificially created distortions, e.g. rotation, solarization, cropping etc. self-supervised learning (SSL) approaches rely on simpler and more scalable frameworks for learning. In this paper, we unify these two families of approaches from the angle of active learning using self-supervised learning mainfold and propose Deep Active Learning using BarlowTwins(DALBT), an active learning method for all the datasets using combination of classifier trained along with self-supervised loss framework of Barlow Twins to a setting where the model can encode the invariance of artificially created distortions, e.g. rotation, solarization, cropping etc.
translated by 谷歌翻译
Generative AI has matured to a point where large-scale models can generate text that seems indistinguishable from human-written text and remarkably photorealistic images. Automatically measuring how close the distribution of generated data is to the target real data distribution is a key step in diagnosing existing models and developing better models. We present MAUVE, a family of comparison measures between pairs of distributions such as those encountered in the generative modeling of text or images. These scores are statistical summaries of divergence frontiers capturing two types of errors in generative modeling. We explore four approaches to statistically estimate these scores: vector quantization, non-parametric estimation, classifier-based estimation, and parametric Gaussian approximations. We provide statistical bounds for the vector quantization approach. Empirically, we find that the proposed scores paired with a range of $f$-divergences and statistical estimation methods can quantify the gaps between the distributions of human-written text and those of modern neural language models by correlating with human judgments and identifying known properties of the generated texts. We conclude the paper by demonstrating its applications to other AI domains and discussing practical recommendations.
translated by 谷歌翻译
Agile robotics presents a difficult challenge with robots moving at high speeds requiring precise and low-latency sensing and control. Creating agile motion that accomplishes the task at hand while being safe to execute is a key requirement for agile robots to gain human trust. This requires designing new approaches that are flexible and maintain knowledge over world constraints. In this paper, we consider the problem of building a flexible and adaptive controller for a challenging agile mobile manipulation task of hitting ground strokes on a wheelchair tennis robot. We propose and evaluate an extension to work done on learning striking behaviors using a probabilistic movement primitive (ProMP) framework by (1) demonstrating the safe execution of learned primitives on an agile mobile manipulator setup, and (2) proposing an online primitive refinement procedure that utilizes evaluative feedback from humans on the executed trajectories.
translated by 谷歌翻译
Code generation models have achieved impressive performance. However, they tend to be brittle as slight edits to a prompt could lead to very different generations; these robustness properties, critical for user experience when deployed in real-life applications, are not well understood. Most existing works on robustness in text or code tasks have focused on classification, while robustness in generation tasks is an uncharted area and to date there is no comprehensive benchmark for robustness in code generation. In this paper, we propose ReCode, a comprehensive robustness evaluation benchmark for code generation models. We customize over 30 transformations specifically for code on docstrings, function and variable names, code syntax, and code format. They are carefully designed to be natural in real-life coding practice, preserve the original semantic meaning, and thus provide multifaceted assessments of a model's robustness performance. With human annotators, we verified that over 90% of the perturbed prompts do not alter the semantic meaning of the original prompt. In addition, we define robustness metrics for code generation models considering the worst-case behavior under each type of perturbation, taking advantage of the fact that executing the generated code can serve as objective evaluation. We demonstrate ReCode on SOTA models using HumanEval, MBPP, as well as function completion tasks derived from them. Interesting observations include: better robustness for CodeGen over InCoder and GPT-J; models are most sensitive to syntax perturbations; more challenging robustness evaluation on MBPP over HumanEval.
translated by 谷歌翻译
While pre-trained language models (LM) for code have achieved great success in code completion, they generate code conditioned only on the contents within the file, i.e., in-file context, but ignore the rich semantics in other files within the same project, i.e., cross-file context, a critical source of information that is especially useful in modern modular software development. Such overlooking constrains code language models' capacity in code completion, leading to unexpected behaviors such as generating hallucinated class member functions or function calls with unexpected arguments. In this work, we develop a cross-file context finder tool, CCFINDER, that effectively locates and retrieves the most relevant cross-file context. We propose CoCoMIC, a framework that incorporates cross-file context to learn the in-file and cross-file context jointly on top of pretrained code LMs. CoCoMIC successfully improves the existing code LM with a 19.30% relative increase in exact match and a 15.41% relative increase in identifier matching for code completion when the cross-file context is provided.
translated by 谷歌翻译
The evaluation of abstractive summarization models typically uses test data that is identically distributed as training data. In real-world practice, documents to be summarized may contain input noise caused by text extraction artifacts or data pipeline bugs. The robustness of model performance under distribution shift caused by such noise is relatively under-studied. We present a large empirical study quantifying the sometimes severe loss in performance (up to 12 ROUGE-1 points) from different types of input noise for a range of datasets and model sizes. We then propose a light-weight method for detecting and removing such noise in the input during model inference without requiring any extra training, auxiliary models, or even prior knowledge of the type of noise. Our proposed approach effectively mitigates the loss in performance, recovering a large fraction of the performance drop, sometimes as large as 11 ROUGE-1 points.
translated by 谷歌翻译
A fundamental characteristic common to both human vision and natural language is their compositional nature. Yet, despite the performance gains contributed by large vision and language pretraining, we find that - across 6 architectures trained with 4 algorithms on massive datasets - they exhibit little compositionality. To arrive at this conclusion, we introduce a new compositionality evaluation benchmark CREPE which measures two important aspects of compositionality identified by cognitive science literature: systematicity and productivity. To measure systematicity, CREPE consists of three test datasets. The three test sets are designed to test models trained on three of the popular training datasets: CC-12M, YFCC-15M, and LAION-400M. They contain 385K, 385K, and 373K image-text pairs and 237K, 210K, and 178K hard negative captions. To test productivity, CREPE contains 17K image-text pairs with nine different complexities plus 246K hard negative captions with atomic, swapping, and negation foils. The datasets are generated by repurposing the Visual Genome scene graphs and region descriptions and applying handcrafted templates and GPT-3. For systematicity, we find that model performance decreases consistently when novel compositions dominate the retrieval set, with Recall@1 dropping by up to 8%. For productivity, models' retrieval success decays as complexity increases, frequently nearing random chance at high complexity. These results hold regardless of model and training dataset size.
translated by 谷歌翻译